Transfinite Context-Free Generative Grammars

Contents

1

Introduction 3
1.1 Related Work o 3
1.2 Terminology and Notation 4
1.3 The Classical Theory 4

1.3.1 Generative Grammars 4

1.3.2 The Chomsky Hierarchy 5

1.3.3 Classical Results 6
Transfinite Generative Grammars 6
2.1 Motivationo 6
2.2 Ordinal Languages 7
2.3 Taking Limits 7
Ordinal Type-2 Languages 9
3.1 Ordinal Context-Free Grammar 9
3.2 Ordinal Derivation Tree 10
3.3 Closure Properties 11
3.4 Examples 11
Ordinal Type-3 Languages 14
4.1 Ordinal Regular Grammar 15
4.2 Ordinal Finite State Automata 15
4.3 Examples 17
Properties of Ordinal Regular Languages 18
5.1 Pumping Lemma o000 18
5.2 Deflation Lemma L L o 19
5.3 Size of Regular Languages 20

5.4 Closure Properties 21

1 Introduction

The aim of this essay is to generalise the lower part of the well-studied Chom-
sky hierarchy, used to classify generative grammars in computation theory, to a
transfinite setting. In Section 2, we will define a variant of context-free gram-
mar that generalises the classical notion to include computation on objects of
general ordinal length. It turns out that there is a natural way of restricting
these ordinal context-free grammars to transfinite notions of regular grammars
with a corresponding machine model (Proposition 4.1). Unlike in the classical
theory, when further introducing the corresponding notion of determinism for
these ordinal regular grammars, we get a strictly weaker model of computation
(Proposition 5.8). Despite this difference, we will see in Section 5 that some
fundamental results from the classical theory can be adapted to the transfinite
setting.

1.1 Related Work

The theory of transfinite computation is the area of computation theory study-
ing the transfinite extensions of computation models (first introduced in [3]).
The key idea is that we allow our notion of “algorithm” to involve an ordinal
number of steps, beyond the positive integers as is traditional custom. Such a
generalised notion of computation can thus perform infinitely many steps, and
perform even more computation after it is done with all of them. A large part
of the theory is concerned with extending classical models of computation (such
as Turing machines or register machines) to the transfinite setting (see [4] for a
systematic overview).

The existing transfinite computation literature is predominantly concerned with
finding transfinite versions of comparatively strong models of computation and
focuses mainly on the automata models. Examples of such generalised models
include Infinite Time Turing (Register) Machines and Ordinal Turing (Register)
Machines and many more (cf. [4, §2]). A few authors also define transfinite
notions generalising regular languages via generalised finite state automata (cf.
[4, §2.7.1], [7, §1]). Some work has also been done on investigating the notion
of determinism in transfinite settings, examples of this include the discussions
in [5, §4] and [6, §2.2].

1.2 Terminology and Notation

Throughout this essay, we will use the following standard terminology and no-
tation from classical computation theory.

symbol an atomic unit of computation
alphabet | a collection of symbols
word a string of symbols (over some alphabet)

language | a collection of words (over some alphabet)

5 the empty word/symbol

To better distinguish between variables representing symbols and words, we
will denote the latter using boldface. While words will be denoted using lower-
case letters, we will use upper-case letters for alphabets and languages. Both
lower-case and upper-case letters will be used to denote symbols, depending on
their nature. For any alphabet 3, we will write ¥* for the Kleene closure of
3, denoting the language of all finite words over ¥. We extend this notation
and also write L* for the language of all finite concatenations of words from the
language L. For languages L1 and Ly over alphabet ¥, we will also write LiLo
for the languages of all concatenations of words from language L, with words
from language Lo and L for the complement ¥* \ Ly of L. For a symbol or
word z and an integer k > 0, we write 2* for the k-fold repetition of x.

1.3 The Classical Theory
1.3.1 Generative Grammars

Generative grammars give constructive descriptions of languages by specifying
some replacement rules on an alphabet enriched with additional symbols only
used in the generation process. A word is in the language generated by the
grammar if it can be derived by a finite sequence of these replacements rules,
starting with a specified initial symbol. In classical computation theory, we
formally define generative grammars as follows (cf. [2, §1.2]).

Definition 1.1 (Grammar). A grammar G is a tuple (N, X, P, S) where N
is a finite alphabet of non-terminal symbols, ¥ is a finite alphabet of terminal
symbols (disjoint from N), P is a finite set of production rules of the form

a— b,

with @ € N*\ {¢} and b € (N UX)*. Lastly, S € N is the initial symbol. The
language generated by G, written L(QG), is the subset of X* that can be obtained
by a finite sequence of substring replacements according to the production rules,
starting with the initial symbol S.

We can combine notation for multiple production rules with the same left-hand
side, writing the shorthand

a—by|ba|--|bg for a— b1, a—ba, ..., a— bg.

Some classical examples of languages given by generative grammars (with the
initial symbol S) are given below.

N by P Language

S () | S—=8S|e|(9) Balanced strings of parentheses
S a,b | S—aSh|e {a"b™ | n > 0}

S, X |ab|S—aS|bX, X 5aS|bX |e | {wb|w e {a,b}*}

Table 1: Examples of generative grammars and the languages they generate

1.3.2 The Chomsky Hierarchy

Restricting the shape of the production rules for classical generative grammars
gives rise to a hierarchy of languages called the Chomsky hierarchy (cf. [2,
§11]). Each level in this hierarchy also has a corresponding automata model that
generates the same class of languages. These machine models include Turing
Machines (TM), Linear Bounded Automata (LBA), Push-Down Automata and
Finite State Automata (FSA). We also give each level a name, which we use
to refer to both the class of grammars and the class of languages generated by
them.

Type | Production Rules | Name Automaton

0 u—v (u#e) | Computably Enumerable | TM

1 uAw — uvw Context-Sensitive LBA
2 A—w Context-Free PDA
3 A—aB|e Regular FSA

Table 2: The four levels of the Chomsky hierarchy

1.3.3 Classical Results

The following are some of the fundamental results from the classical theory
concerning context-free and regular languages. They are all proved in detail in
[2, §4.1,84.3, §8] and [1, §4.1.1,84.2.1, §7.3.2].

Proposition 1.1 (Closure Properties of Context-Free Languages). If L1, Lo are
two context-free languages over the same alphabet, then so are Ly U Lo, L1Ls
and L}. However, L1 N Ly and Ly are not necessarily context-free.

Lemma 1.2 (Pumping Lemma). For every regular language L there is a pos-
itive integer . with the following property: Every w € L with |w| > n can be
decomposed as w = wywows, where [wiws| < n, wy # ¢ and wiwkws € L for
every integer k > 0.

Proposition 1.3 (Closure Properties of Regular Languages). If L1, Ly are two
reqular languages over the same alphabet, then so are all of L1, L1 N Lo, L1ULs
and L1L2.

In sections 3.3 and 5 we will find equivalent statements in the transfinite setting
for all the above results. We will then refer back to these for comparison.

2 Transfinite Generative Grammars

2.1 Motivation

Often, the definitions given in transfinite computation are not very canonical,
with many seemingly arbitrary choices when defining the behaviour at limits.
Having a transfinite notion of generative grammar and a corresponding Chom-
sky hierarchy could help unify some of the many variations and inform the
choices made in the various definitions.

One of the big obstacles in transfinite computation theory is that the notion of
non-determinism is more substantial than in the classical theory (cf. [5, §4], [6,
§2.2]). Most classical models of computation do not gain any more power when
non-determinism is introduced. This is rarely the case in transfinite computa-
tion, because an additional existential quantifier could range over collections of
arbitrary cardinality (or even proper classes), as opposed to just a countable
set. In Section 5, we will prove that this phenomenon occurs already at a trans-
finite equivalent of the type-3 level. This splitting of the Chomsky hierarchy
is representative of an overarching dichotomy between determinism and non-
determinism in transfinite computation theory. Studying these comparatively
simple models of computation could shed light on how to deal with this obstacle
in general.

2.2 Ordinal Languages

To extend the notion of generative grammar to the transfinite, we first need to
define what we mean by a “word of transfinite length”. This definition is quite
natural, and we adopt notation from the classical theory.

Definition 2.1 (Ordinal Word). Let ¥ be a set and v an ordinal. An ordinal
word w over the alphabet ¥ of length ~y is a function v — X. Let w’ be another
ordinal word. We write |w| for the length of w and ¢ for the unique empty word
of length 0. Further, we write ww’ for the concatenation of w and w’ of length
|w| + |w’| defined by

b Jw(a), ifa<|w
) = {w'w), if o = |w| + 3

We also need a corresponding concept of a transfinite language. Slight care is
needed here, as we also want to consider collections of ordinal words that are
proper classes. We also define an ordinal version of the Kleene Star.

Definition 2.2 (Ordinal Language). An ordinal language L over alphabet ¥
is a collection of ordinal words over X. Let w be an ordinal word and L’ be
another ordinal language over ¥. We write X® for the ordinal Kleene closure
of X, the language of all ordinal words over ¥. Further, we write L® for the
language of ordinal length concatenations of words in L and denote by L the
ordinal language %® \ L.

2.3 Taking Limits

The main task when seeking a meaningful definition of transfinite generative
grammar is to decide what happens at limit stages. We need to decide on the
result of applying a limit ordinal number of production rules. In the classical
theory, consecutive applications of the production rules are usually represented
in a linear fashion, connected by arrows (cf. [1, §5.1, §5.2]). The information
about which part of the word the production rule is being applied to is usually
omitted since even in the case where it is ambiguous, it does not impact the
outcome of the derivation. The reason for this is the finite nature of these
derivations. Let us consider the generative grammar G with initial symbol A,
non-terminal alphabet {A, B}, terminal alphabet {a,b} and production rules

A—aAl|aB|a, B—bA|bB.

This grammar generates the language of all finite words over {a,b} that start
and end in the symbol a. In the classical theory, the derivation of the word
abaaba could be written

A — aB — abA — abaA — abaaB — abaabA — abaaba.

Now suppose that we wish to apply the production rule A — aA a total of
w times to the initial symbol A. We need to choose the result of the partial
derivation

A — aA — aaA — aaaA — aaaaAd — - -,

where the dots represent an w limit of production rule applications. The only
natural choice is to have this sequence result in the word a“ A, so we seek a
notion of limit that behaves in this way. On the other hand, if we alternate
production rules A — aB and B — bA, it is not clear what the result of the
derivation

A — aB — abA — abaB — ababA — - --

should be. We want it to be of the form (ab)¥X where X is a non-terminal that
represents, in some sense, the limit of the non-terminals A and B. Since we do
not want to introduce new symbols, we can instead fix a total order on the set
of our non-terminals of G' and then set S = max {A, B}.

Now let us look at a more troublesome scenario with more non-terminals in-
volved. Consider the grammar G with unique non-terminal S, terminal alphabet
{a,b} and production rules

S — SS|Sa|Sh|e.

Now the derivation S — SS — SSS — SSSS — --- is ambiguous, since it is
not clear which of the symbols the production rule was applied. In the classical
theory, this is not an issue, since all possible derivations yield the same result. In
the above infinite derivation, however, it does make a difference. If the symbol
replaced is always the last one, we would naturally want the limiting word to
be S$“S, in accordance with the natural limits we’ve seen before. If however,
we eventually always replaced the second to last symbol, we would pick the
limit S“SS instead. With the grammar defined above we do run into another
problem as well. Consider the derivation chain

S — Sa — Sba — Saba — Sbaba — - - - |

where we alternate between the production rules S — Sa and S — Sb. In this
case, while there is an obvious pattern in the word of terminals generated, it is
not possible to make a sensible choice for what should be at the second position
of the resulting word. We could overcome this issue by again defining some
limiting x of the terminals a, b and then choosing the result of the derivation to
be Sz*. This however is a very intrusive operation that destroys the alternating
nature of the derivation leading up to it, so not a desirable solution.

The above examples suggest that these linear representations of derivations
used in the classical theory do not carry sufficient information to be naturally
extended to the transfinite setting. Furthermore, being able to have unlim-
ited derivations that “generate symbols to their right” seems to cause problems
at limit stages. This apparent asymmetry between left and right is not unex-
pected, given that increasing and decreasing sequences behave very differently

in the ordinals. The upshot of this section is that to get a coherent notion of
generative grammar in the transfinite setting, we have to define derivations on
a richer structure that takes into account the above observations. In the case
of context-free grammars, derivations can also be represented using derivation
trees. It turns out that this is a much more natural way to work with transfinite
derivations.

3 Ordinal Type-2 Languages

This section aims to extend the notion of context-free (type-2) languages to the
transfinite setting. We first extend the definition of context-free grammars, then
we define what it means for such a grammar to generate an ordinal word.

3.1 Ordinal Context-Free Grammar

While the classical definition of generative grammar is rather canonical, there
are many more choices to be made in the transfinite setting. Since we work over
the entire class of ordinals, the sizes of the various sets in the definition could
be limited to arbitrary cardinalities. The same goes for the word lengths in the
production rules. For the sake of scope and simplicity, we will only consider
grammars that are finite. This means all sets and words in the specification of
the grammar are finite. With this restriction, the definition of ordinal context-
free grammar looks almost like the classical definition. The only difference
is that we additionally require the set of non-terminals to be totally ordered,
which will become important in the limit steps of the derivation process defined
in section 3.2.

Definition 3.1 (Ordinal Context-Free Grammar). An ordinal context-free gram-
mar (or OCFG for short) G is a tuple (N, X, P,S) where N is a finite, totally
ordered set of non-terminal symbols, ¥ is a finite set of terminal symbols, dis-
joint from N, P is a finite set of production rules of the form

A — a,

where A € N, a € (NUX)* and S € N is the initial symbol.

The transfinite aspect of these grammars is only present in the ability to apply a
transfinite number of production rules in the derivation process. The benefit of
requiring our ordinal grammars to be finitely describable is that they compare
very directly to classical grammars. The fact that they can be finitely encoded
also allows us to consider classical decision problems for these grammars.

3.2 Ordinal Derivation Tree

As discussed in Section 2.3, the linear approach is not able to capture the much
richer structure of transfinite-length derivations. Thus we define a transfinite
notion of a derivation tree with arbitrary ordinal depth. Since such a tree might
have vertices at limit depths, we cannot define it using a parent-child relation.
Rather, we have to use a global ancestry relationship.

Definition 3.2 (Ordinal Depth Tree). An ordinal depth tree T is a tuple
(X,0,<,<) where X is a set of vertices, 0 is an element of X called the root.
Also, < is a partial order on X called the ancestry relation with least elements
0, the property that for every z € X, the set {y € X | y < x} is well-ordered
and such that every chain is bounded above. Further, < is a total order on X
that induces a well-order on the maximal chains of (X, <) when ordered by their
first deviation. For vertices x,y € X, we say that x covers y if x > y and there
isno z € S with & > z > y (this recovers the weaker child-parent relation). We
call the maximal vertices of T' the leaves of T'.

The last two conditions on the order < guarantee that every vertex has a unique
ordinal depth and every branch of the tree ends in a leaf vertex, rather than
in a limit of vertices. The only purpose of the secondary relation on X is to
well-order the descendent of each vertex and thus induce a well-order on the
leaves of the ordinal depth tree.

With the structure part of the derivation tree defined, we now decorate the
tree with the symbols of our grammar. Just like in the classical case, leaf
vertices are decorated with terminal symbols (or the empty symbol) while non-
leaf vertices are assigned non-terminals. Of course, we require this assignment
to be in accordance with the production rules of our ordinal grammar, with
limit vertices determined by the limsup of the non-terminals above it.

Definition 3.3 (Ordinal Derivation Tree). Given a OCFG G = (N, 3, P, S), an
ordinal derivation tree of G is an ordinal depth tree T = (X, 0, <, <) together
with a map f: T — N UX U {e} such that f(0) = S, f(x) € ¥ U {e} for each
leaf z of T and f(x) = limsup{f(y) | ¥ < «} for limit vertices z € X \ 0.
Furthermore, if y; <ys <ys <--- are the vertices covering x, then

f(@) = fly)f(y2) fys) -

must be a production rule of G. We say that the derivation tree of G derives
the ordinal word obtained by concatenating the values of f at the leaves of T,
in the order induced by <. In doing so, the symbol ¢ is treated as the empty
symbol, not contributing to the generated word. We say that the grammar G
derives the ordinal word w if there is a derivation tree of G that derived w.

Note that the above definitions are phrased in a way that also allows production
rules with infinite words on the right-hand side, which we will not study in this
essay. From here we conclude with the definition of an ordinal context-free
language.

10

Definition 3.4 (Ordinal Context-Free Language). An ordinal language L is
called an ordinal context-free language (or OCFL for short) if there is an OCFG
G that derives exactly the words in L. In this case, we say that L is the language
of the grammar G.

3.3 Closure Properties

Our notion of ordinal context-free language resembles the classical notion not
only in a very similar definition but also behaves very similarly. In particular,
these languages satisfy the same closure properties laid out in section 1.3.3
(unions, concatenations and Kleene closure). Additionally, OCFLs are closed
under ordinal Kleene closure.

Proposition 3.1 (Closure Properties of OCFLs). If Ly and Lo are two OCFLs
over the same alphabet ¥, then so are all of

LiLy, LiULy, Lj, L?.

Proof. Let G1 = (N1,%, P1,S51) and G2 = (N3, 2, P», S3) be OCFGs that gen-
erate Ly and Lo respectively (with N7 and N> disjoint). Define a new OCFG
G = (N,E,P,S) with N = N1 |_|N2|_|{S} and P = P1 UPQ. If we add the
production rule S — S15 to P, we have L(G) = L1 Ly and if we instead add
S — 51| Sa, we get L(G) = L1 N Ly. Now consider the grammar G with addi-
tional production rule S — 515 | e. This rule alone generates ordinal words of
repeated symbol S;. Thus, we get L(G) = L. If instead we add the production
rule S — SS; | e we get L(G) = L7, since S produces symbols to its right and
hence can only do so finitely many times. Thus we can find an OCFG that
generates each of the languages in question, making them all OCFLs. O

The above proof suggests that there is a duality between finite and arbitrary
ordinal length. This phenomenon is closely linked to the fact that in the ordinals
any decreasing sequence must be finite, while increasing sequences can be of
arbitrary length.

3.4 Examples
The Ordinal Dyck Language

Consider the ordinal context-free grammar G with single non-terminal S, termi-
nal symbols {(,)} and production rules S — SS | (S) | . In the classical theory
this grammar is called the Dyck Grammar and the language it generates is the
set of all finite words of balanced parentheses. In the transfinite context, we
also include ordinal words that satisfy a generalised notion of “being balanced”.
We call this larger language the Ordinal Dyck Language. Consider for example
the following ordinal derivation tree of GG, where the dashed section represents
a limit of length ~.

11

Figure 1: An ordinal derivation tree of GG, generating an ordinal Dyck word of
length v + 3, starting with (()(())--- and ending in ()).

This is a valid derivation tree of GG since it is an ordinal depth tree whose root is
decorated with the initial symbol S, each vertex labelled with .S has either three
children labelled (,S,) in this order or a single child labelled e. Furthermore,
the limiting vertex (drawn in bold) is labelled with the limsup of its ancestors’
labels.

We note that a typical ordinal depth tree grows into the bottom-right direction
just like the above tree. This is because the well-order condition on the leaves of
the tree implies that all chains can only have finitely many offshoots to the right.
Thus, any infinite chain is eventually the right-most possible path through the
tree, with all offshoots to the left.

We claim that an ordinal word w of parentheses is in the ordinal Dyck language
if and only if there is a function f : |w|+ 1 — w that satisfies

f(0) = f(lw]) =0,

fla)+1, ifwla+1)=(

for successors o + 1 < |w,
fla)—1, fwla+1)=) < Jul

f(y) =liminf{f(a) : @ < v} for non-zero limits v < |w]|.

Intuitively, the ordinal Dyck language consists of all ordinal words of balanced
parenthesis with no infinitely deep nesting.

12

Proof. If |w| < 2 the result is trivial. We induct on the length of w. Let
w € {(,)}® and f : |w|+ 1 — w be a function with the above properties. If
there is no ordinal 0 < « < |w| with f(«) = 0, not that w must start in (and
end in). Let w’ be the word obtained by removing the first and last symbol of
w. Now |w'| < |w| and after subtracting 1, f restricts to a function with the
desired property on |w’|+ 1. Thus w’ is in the Dyck language by induction and
w = (w’) is also, due to the production rule S — ().

If instead there is some 0 < a < |w]| with f(«) = 0, then if there is a largest such
o we write w = wyws with |wq| = a < |w|. Since f is strictly positive on ws,
we have w = w;(w}) with w’ in the Dyck Language by a similar argument to
the one above. Hence using the production rules S — SS and S — (S) we find
that w is also in the Dyck language. If there is no largest such «, we can find w
many of them aq, aa,... and write w = wywsy - -+ with |wiws - - - wy| = ay, for
all integers k > 1. Restricting f to these prefixes we find that wy, is in the Dyck
language for all £ > 1 using the inductive hypothesis. Using the production rule
S — 5§ a total of w times we can derive the word S“, and substituting the
derivation tree for the wy, for these symbols we find that w is also in the Dyck
language.

Conversely, let w be a word in the Dyck language and fix an ordinal derivation
tree that generates w. For any ordinal o < |w| consider the leaf vertex of the
derivation tree that corresponds to w(«). Look at the unique path from the
root to this vertex. We now set f(«) to be the number of vertices on this path
corresponding to the production rule S — (5), where the path either continued
along the first or second branch. Since this rule has a third (non-trivial) offshoot,
there can only be finitely many such vertices on the path. Also set f(|w]|) = 0.
It follows from the structure of the ordinal derivation tree and the nature of the
production rules that f satisfies the desired properties. O

Alternating Finite Runs

Consider the ordinal context-free grammar G with non-terminals {S > A > B},
terminals {a,b} and production rules

S— ABS|Ale, A— Aa|a, B— Bb|b.

Ilustrated below is part of a possible derivation tree of G where the dashed
section again represents a limit stage of length ~.

13

~
~
~
@ @)

Figure 2: An ordinal derivation tree of GG, generating a word of length v + 1
starting with aaabaabbbbaabb ... and ending in the symbol a.

The single production rule involving the non-terminal S produces ordinal words
of alternating symbols A and B, where all symbols at limit positions are A.
This is because the order on the non-terminals introduces a symbol S at every
limit stage, which can only be removed by replacing it with the symbol A.
Since the production rules for A and B produce terminals to their right, they
each generate finite, non-empty words in only the terminal symbol a and b
respectively. Putting everything together, we find that L(G) is the language of
ordinal words over alphabet {a,b} that do not contain infinite runs of a single
symbol, and have symbol a at all limit positions (including the start of the

word).

4 Ordinal Type-3 Languages

In the classical theory, the production rules of context-free (type-2) grammars
can be further restricted to regular (type-3) grammars as described in section
1.3.2 on the Chomsky hierarchy. It could be expected that a similar restriction
is possible for our notion of ordinal context-free grammar. While this is still the
case, the transfinite theory diverges from the classical theory by offering two
distinct possible restrictions. We will wait until Section 5 to prove that these

two restrictions are not equivalent.

14

4.1 Ordinal Regular Grammar

Definition 4.1 (Ordinal Regular Grammar). An ordinal context-free grammar
is called an ordinal regular grammar (or ORG for short) if all its production
rules are of the form

A—aB or A— e,

where A, B € N, a € X. If in addition for every A € N,a € X there is at most
one B € N with A — aB € P, then we call the grammar deterministic (or a
DORG for short).

Definition 4.2 (Ordinal Regular Language). An ordinal language L is called
a (deterministic) ordinal regular language (or (D)ORL for short) if there is a
(D)ORG G that derives exactly the words in L. In this case, we say that L is
the language of grammar G.

In the classical theory, the distinction between deterministic and non-deterministic
grammars is only superficial. The two definitions are easily shown to be equiva-
lent and thus there is a canonical way of defining type-3 languages. At the end
of Section 5, we will see that this is not the case in the transfinite setting, where
deterministic ordinal regular grammars are strictly weaker.

4.2 Ordinal Finite State Automata

As in the classical theory, regular languages are most easily reasoned about from
within a machine model (cf. [1, §2.2, §2.3]). Luckily the translation between
the grammar and automaton is very similar in the transfinite setting.

Definition 4.3 (Ordinal Finite State Automata). An ordinal finite state au-
tomaton (or OFSA for short) M is a tuple M = (N,X%,6,S,F) where N is
a totally ordered, finite set of states, ¥ is a finite alphabet, § is a function
N x ¥ — P(N), S € N is the initial state and F' C N is a subset of accepting
states. For an ordinal word w € ¥® we further define a path of w through M
to be a function f : |w|+ 1 — N such that

f(0) =S,
fla+1) =6(f(a),w()) for successors a + 1 < |w,
f(y) =limsup{f(a) | @ <~} for limits v < |w].

If in addition f(|w|) € F, we call the path f accepting. An ordinal word w over
Y is said to be accepted by the OFSA M if there is an accepting path for w.
The language accepted by M is the language of all ordinal words accepted by
M. If in addition, |§(4,a)| < 1forall A € N and a € X, then we call the OFSA
deterministic (or an DOFSA for short).

15

In the classical theory, the above is usually done with the notion of an ex-
tended transition function A : N x ¥* — P(N). While this method could be
adapted for deterministic ordinal regular automata, such a function does not
carry enough information to define the behaviour in the non-deterministic case.
This is because at limit stages we need to know the exact path already taken
through the automaton, rather than just the possible states at every step in
the past. This surplus in necessary information is also the intuitive reason why
non-determinism is a much stronger notion in the transfinite setting.

Proposition 4.1. An ordinal language is generated by some (D)ORG if and
only if it is accepted by some (D)OFSA.

Proof. Let G = (N,X, Pg,S) be an ORG. Now we define the OFSA M =
(N, 2,00, S, Fur) by setting

5(A,a):{B€NG\A—>aB€PG}

and
FM:{AENg‘A—)Eepg}.

It follows straight from the definitions that L(M) = L(G). Conversely, given an
OFSA M = (N,,0x, S, Far), define the ORG G = (N, ¥, Pg, S) by setting

Po={A—ec|AcFytU{A—aB|Ac Ny, Bei(Aa)}

It again follows straight from the definitions that L(G) = L(M). Also, note
that both directions preserve the condition for the automaton or the grammar
to be deterministic. O

As alluded to before, we will prove in Section 5 that unlike in the classical theory,
the notions of DOFSA and OFSA are not equivalent. The classical proof of this
equivalence makes use of what is called the subset construction (cf. [2, §2.3]).
This line of reasoning crucially uses the fact that the power set of a finite set is
finite. For the same reason mentioned above concerning the extended transition
function, this argument does not work in the transfinite setting. While the
machine itself is finite, infinite information on the past is required to determine
what state to go to at a limit step.

In our definition of deterministic ordinal regular automata, we allow the tran-
sition function to map to the empty set of states, which allows for simpler
diagrams. However, the following lemma shows that the machine does not lose
any power if we demand the transition function to only map to singletons, a
property which we will need in Section 5.4.

16

Lemma 4.2. For every DOFSA M = (N, F,%,4,5) there is another DOFSA
M' = (N',F,%,§,5) that accepts the same language as M and has [0'(A4,a)| =1
forallAe N and a € X.

Proof. We define M’ by setting N’ = NU{D} and §' : N’ x ¥ — N’ where
§(A,q) = d(A,a) if|6(A,a)|=1
’ {D} if |6(A,a)] =0

for all A € N and a € ¥ and 6'(D,a) = {D} for all a € ¥. By construction
[0'(A,a)] = 1 for all A € N';a € ¥ and it is easy to check that L(M') =
L(M). O

Our choice to restrict grammars to finite sets means that the above notion of
transfinite finite state automaton is conceptually antipodal to the notion defined
in [4, §2.7.1], where the grammar itself is too large to be modelled by a set. Our
notion also crucially deviates from the various omega-automata defined in [7,
§1] which only operate on words of length < w and thus give a strictly weaker
model.

4.3 Examples
Constant Suffix Language

Consider the (deterministic) ordinal regular grammar G with non-terminals
{S > X}, terminals {a, b} and production rules

S —=aS|bX, X - aS|bX |e.

Tlustrated below is the (deterministic) ordinal FSA corresponding to G.
a b

start — @

a

Figure 3: The DOFSA corresponding to the DORG G.
The language generated by G is easily seen to be the language of ordinal words

over the alphabet {a, b} that either end in the symbol b or whose tail is a limit
containing only the symbol b.

17

Alternating Language with Priority

Consider the (deterministic) ordinal context-free grammar G with non-terminals
{S < A < B}, terminals {a,b} and production rules

S—aB|bA|e, A»aB|e, B—bA]|ec.

Hlustrated below is its corresponding (deterministic) ordinal finite state automa-
ton with the added dead state D described in the previous lemma.

b
start —>
a

Figure 4: The DOFSA corresponding to the ORG G, with added dead state D.

It is not hard to see that L(G) is the language of all ordinal words that alternate
between symbols a and b, with no symbol a at any non-zero limit position. The
latter condition is due to the choice A < B, sending the machine to state B at
every limit stage.

5 Properties of Ordinal Regular Languages

5.1 Pumping Lemma

The main tool for arguing about the structure of regular languages in the clas-
sical theory is the pumping lemma (cf. [1, §4.1]). Considering the similarities
between the classical and the transfinite automata model, it is easy to see that
the statement of the classical pumping lemma still applies to ordinal regular
languages. However, we would like to pump not only an integer number but
rather an arbitrary ordinal number of times.

Lemma 5.1 (Ordinal Pumping Lemma). For every ORL L there is a posi-
tive integer n with the following property: Every w € L with lw| > n can
be decomposed as w = wijwswzwy, where lwiwows| < n, wows #* € and
wiws (wsws)*wswy € L for every ordinal .

When trying to adapt the classical proof, the only obstacle is pumping through
limit stages where we have to be careful not to violate the limsup condition.
This can be overcome by first creating a substring that can be pumped, whose
leading symbol is maximal in the total order.

18

Proof. Let M = (N, F,%,4,5S) be an OFSA that accepts the language L. We
will show that n = |N| satisfies the desired condition. Let w € L be such that
|w| > n and let f be an accepting path of w through M. Using the pigeonhole
principle, there are integers 0 < t; < t5 < t3 < n such that f(t1) = f(¢3)
and f(t2) = max{f(¢t1), f(t1 +1),..., f(t3)}. We decompose w = wjwowswy
such that |wi| = t1, |[wiws| = t3 and |wiwowsz| = t3 < n. Note also that
|waws| = t3 —t; > 0. Now for any ordinal a, let w, = wiws(wsws)*wswy
and define f, : jwa| +1 — N by

fa(k) = f(k) for 0 < k < |wyws|,

falte + (ts —t1)B+ k
Jalta+ (ts —t1)B + k

falta+ (ts —t1)a+ B

)=
)= f(ta+ k) for 0 < k < |ws| and 8 < a,

)= f(t1 + k) for |lwz] <k < |waws| and 8 < «,
) = f(ta + B) for B < |wzwy.

It follows from the nature of the decomposition that f, is an accepting path of
w, through M. Hence, w, € L for all ordinals «. O

5.2 Deflation Lemma

In the classical theory, the pumping lemma can also be used to pump down
words (by using k£ = 0). While we can also do this in the transfinite setting, the
classical idea only removes finitely many symbols at a time, making it impossible
to shrink below limit stages. We thus need another result allowing us to remove
“large” parts of a word.

Lemma 5.2 (Deflation Lemma). For every ORL L and any w € L with
|lw| > w, we can write w = wiwows where |lwiws| < |w| aend wiws € L.
Additionally, we can pick |w1| arbitrarily close to the largest limit below |w).

Proof. Let M = (N, F,%,4,5) be an OFSA that accepts the language L. Let
w € L and let f be an accepting path of w though M. Set |w| = v + n where
~v > 0 is a limit, n > 0 an integer. Since N is finite and f(y) = limsup { f(«) |
a < ~v}, we must have f(a) = f(v) for some a < 7. Write w = wywows where
|wi] = a and |wyws| = . Now define f’ : jwiws| + 1 — N by setting

' (B) = f(B) for all ordinals 8 < «,
f'(a+k)=f(y+k) forall integers 0 <k < n.

By the choice of « it follows that f’ is an accepting path of wjws though M.
Hence, wyws € L and also |wiws| < v < |w|. Picking « arbitrarily large below
~ gives the additional requirement. O

Note that the above proof makes crucial use of the fact that the alphabet of
non-terminals is finite, and the particular choice of our limiting operation.

19

5.3 Size of Regular Languages

The results from the last section are crucial in understanding not only the
structure but also the size of ordinal regular languages. The following lemma
is concerned with the structure of the ordinal regular language around the first
limit stage w.

Lemma 5.3. An ORL L contains an infinite word if and only if it contains
arbitrarily long finite words.

We will shortly need this result to show that any non-empty ORL L contains a
finite word of arbitrary length.

Proof. Let L be an ORL. If L contains arbitrarily long finite words, then it
must contain a word of length at least n, where n is as in the pumping lemma.
In particular, we can apply the pumping lemma to pump up the word w times,
resulting in an infinite word of the language. Conversely, if L contains an infinite
word, let n be an arbitrarily large integer and let w € L be a shortest word
of length at least n. If |w| > w, we find a shorter word in L still longer than
n, using the deflation lemma, contradiction minimality of |w|. It follows that
n < |w| < w and since n was arbitrary, the result follows. 0

We can now prove the main result of this section. In the classical theory, every
regular language is either finite or the lengths of its words eventually have a
linear structure in w and thus have positive density. The following proposition
gives an analogous dichotomy for ordinal regular languages.

Proposition 5.4. FEvery ORL L is either finite or the lengths of its words are
unbounded below every non-zero limit ordinal.

It follows in particular that if an ORL L is infinite, then it is a proper class
containing words of every cardinal length.

Proof. Let L be an ORL. If L is infinite, then since X is finite, L must contain
arbitrarily long words. By the previous lemma, L must therefore contain arbi-
trarily long finite words. In particular, L contains a word w with n < w < w
where n is as in the pumping lemma. Thus, we can decompose w = wiwawswy
such that |wijwews| < n, waws # € and w, = wyws(wsws)*wsw, € L for all
ordinals . Let 0 < k = |wzws| < w. Since

ka < |wy| = Jwrws| + |lwsws|a + |[wsws| < n + ko + w,

we conclude that as « varies, |w,| is unbounded below every limit ordinal. Thus,
the result follows. O

20

5.4 Closure Properties

In this section, we will investigate the closure properties of ordinal regular lan-
guages. In the classical theory, regular languages are closed under the natural
operations of unions, intersections, concatenations and complementation (as
seen in Section 1.3.3). However, things are more involved in the transfinite
setting. In particular, we will see that with regard to closure properties, deter-
ministic ORLs behave almost complementary to general ORLs. The following
observation is crucial.

Lemma 5.5. There exist DORLs L1 and Lo such that L1 N Ly is not an ORL.

Proof. Let L; be the DORL generated by the DORG studied in the latter exam-
ple from section 4.3. There we have seen that L is the language of alternating
symbols a and b with no symbol b at a non-zero limit position. Now define Loy
similarly, but with the roles of the symbols a and b swapped. Considering the
symbol at position w, we note that L and Lo have no words of infinite length in
common. However, all finite words of alternating symbols a and b are in both L,
and Lo. We conclude that |L; N Ly| = Xg. Comparing this with the dichotomy
result on the sizes of ORL, this implies that L N Ly is not an ORL. O

The above phenomenon is unlike what happens in the classical theory, as classi-
cal regular languages (no matter deterministic or not) are closed under intersec-
tion. One way of proving this directly is to build what is known as the product
automaton of two regular automata, which operates on the Cartesian product
of the two sets of states. In the classical case, this automaton can fully cap-
ture the behaviour of both automata simultaneously. In the transfinite setting,
however, the limit stages again form an obstacle. In particular, there is no total
order of the Cartesian product for which the limsup operation commutes with
the projection maps.

Proposition 5.6 (Closure properties of DORLs). If L1, Ly are DORLs over the
same alphabet, then so is L1. However, L1 N Lo and Ly U Ly are not necessarily
DORLs.

Proof. Let M = (N, F,%,0,5) be a DOFSA that accepts language L. Using one
of the previous lemmas, we can assume that |§(A4,a)| =1 for all A € N,a € X.
Now define a new DOFSA M’ = (N, F',%,4,S) where F/ = N \ F. Using the
fact that every word has a unique path through M, it follows that a word is
accepted by M’ if and only if it is not accepted by M. Thus L(M') = L(M) and
we conclude that L is a DORL. The negative results follow from the previous
lemma and De Morgan’s law, together with the fact that every DORL is an
ORL. O

The argument that DORLs are closed under complementation is the same as in
the classical theory.

21

Proposition 5.7 (Closure properties of ORLs). If Ly, Ly are ORLs over the
same alphabet, then so is L1 U Ly. However, L1 N Ly and L1 are not necessarily
ORLs.

Proof. Let M; = (N;,X%,0;,5;, F;) be an OFSA that accepts language L; for
i =1,2. Define a new OFSA M = (N, X,6,S, F) by setting N = Ny UN, U{S}
(with any total order that preserves the order on N; and Na),

51(14,@) ifAe N,
5(A, (Z) = (52(14, a) if Ae Ny
51(51,a)l_l(52(52,a) ifA=S5

forall A€ N, a € X and

F— F1|_|F2|_|{S} ifSleFlorSQGFQ
N Fi U Fy otherwise '
It is easy to see that M accepts a word w if and only if w € L; N Ly. Hence,

L1 N Ly is an ORL. The negative results again follow from the previous lemma
and De Morgan’s law, together with the fact that every DORL is an ORL. [

We conclude that determinism is a non-trivial restriction on ordinal regular
languages.

Proposition 5.8. The class of DORLs is a strict subclass of the class of ORLs.

Proof. Tt is immediate by the definition that every DORL is an ORL. Con-
versely, the two classes cannot be the same, as only one of them is closed under
complementation. O

22

References

1]

2]

Hopcroft J. E., Ullman J. D.; Motwani R. (2006) Introduction to Automata
Theory, Languages, and Computation, Pearson/Addison-Wesley, 3rd ed.

Linz P. (2016) An Introduction to Formal Languages and Automata 6, Linz
P.

Hamkins J. D., Lewis A. (2000) Infinite time Turing machines, Journal of
Symbolic Logic 65: 567-—604.

Carl M. (2019) Ordinal Computability. An Introduction to Infinitary Ma-
chines, De Gruyter

Lowe B. (2006) Space Bounds for Infinitary Computation, CiE

Carl M., Lowe B., Rin B.G. (2017) Koepke Machines and Satisfiability for
Infinitary Propositional Languages, CiE

Perrin D., Pin J. (2004) Infinite words - Automata, Semigroups, Logic and
Games, Pure and applied mathematics series

23

